Friday, 19 April 2013

Firefly Algorithm


//============================================================================
// Name        : Firefly.cpp
// Authors     : Dr. Iztok Fister and Iztok Fister Jr.
// Version     : v1.0
// Created on  : Jan 23, 2012
//============================================================================

/* Classic Firefly algorithm coded using C/C++ programming language */

/* Reference Paper*/

/*I. Fister Jr.,  X.-S. Yang,  I. Fister, J. Brest, Memetic firefly algorithm for combinatorial optimization,
in Bioinspired Optimization Methods and their Applications (BIOMA 2012), B. Filipic and J.Silc, Eds.
Jozef Stefan Institute, Ljubljana, Slovenia, 2012 */

/*Contact:
Iztok Fister (iztok.fister@uni-mb.si)
*/

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include <memory.h>

#define DUMP 1
#define MAX_FFA 1000
#define MAX_D 1000

using namespace std;

int D = 1000; // dimension of the problem
int n = 20; // number of fireflies
int MaxGeneration; // number of iterations
int NumEval; // number of evaluations
int Index[MAX_FFA]; // sort of fireflies according to fitness values

double ffa[MAX_FFA][MAX_D]; // firefly agents
double ffa_tmp[MAX_FFA][MAX_D]; // intermediate population
double f[MAX_FFA]; // fitness values
double I[MAX_FFA]; // light intensity
double nbest[MAX_FFA];          // the best solution found so far
double lb[MAX_D]; // upper bound
double ub[MAX_D]; // lower bound

double alpha = 0.5; // alpha parameter
double betamin = 0.2;           // beta parameter
double gama = 1.0; // gamma parameter

double fbest; // the best objective function

typedef double (*FunctionCallback)(double sol[MAX_D]);

/*benchmark functions */
double cost(double sol[MAX_D]);
double sphere(double sol[MAX_D]);

/*Write your own objective function */
FunctionCallback function = &cost;

// optionally recalculate the new alpha value
double alpha_new(double alpha, int NGen)
{
double delta; // delta parameter
delta = 1.0-pow((pow(10.0, -4.0)/0.9), 1.0/(double) NGen);
return (1-delta)*alpha;
}

// initialize the firefly population
void init_ffa()
{
int i, j;
double r;

// initialize upper and lower bounds
for (i=0;i<D;i++)
{
lb[i] = 0.0;
ub[i] = 2.0;
}

for (i=0;i<n;i++)
{
for (j=0;j<D;j++)
{
r = (   (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
ffa[i][j]=r*(ub[i]-lb[i])+lb[i];
}
f[i] = 1.0; // initialize attractiveness
I[i] = f[i];
}
}

// implementation of bubble sort
void sort_ffa()
{
int i, j;

// initialization of indexes
for(i=0;i<n;i++)
Index[i] = i;

// Bubble sort
for(i=0;i<n-1;i++)
{
for(j=i+1;j<n;j++)
{
if(I[i] > I[j])
{
double z = I[i]; // exchange attractiveness
I[i] = I[j];
I[j] = z;
z = f[i]; // exchange fitness
f[i] = f[j];
f[j] = z;
int k = Index[i]; // exchange indexes
Index[i] = Index[j];
Index[j] = k;
}
}
}
}

// replace the old population according the new Index values
void replace_ffa()
{
int i, j;

// copy original population to temporary area
for(i=0;i<n;i++)
{
for(j=0;j<D;j++)
{
ffa_tmp[i][j] = ffa[i][j];
}
}

// generational selection in sense of EA
for(i=0;i<n;i++)
{
for(j=0;j<D;j++)
{
ffa[i][j] = ffa_tmp[Index[i]][j];
}
}
}

void findlimits(int k)
{
int i;

for(i=0;i<D;i++)
{
if(ffa[k][i] < lb[i])
ffa[k][i] = lb[i];
if(ffa[k][i] > ub[i])
ffa[k][i] = ub[i];
}
}

void move_ffa()
{
int i, j, k;
double scale;
double r, beta;

for(i=0;i<n;i++)
{
scale = abs(ub[i]-lb[i]);
for(j=0;j<n;j++)
{
r = 0.0;
for(k=0;k<D;k++)
{
r += (ffa[i][k]-ffa[j][k])*(ffa[i][k]-ffa[j][k]);
}
r = sqrt(r);
if(I[i] > I[j]) // brighter and more attractive
{
double beta0 = 1.0;
beta = (beta0-betamin)*exp(-gama*pow(r, 2.0))+betamin;
for(k=0;k<D;k++)
{
r = (   (double)rand() / ((double)(RAND_MAX)+(double)(1)) );
double tmpf = alpha*(r-0.5)*scale;
ffa[i][k] = ffa[i][k]*(1.0-beta)+ffa_tmp[j][k]*beta+tmpf;
}
}
}
findlimits(i);
}
}

void dump_ffa(int gen)
{
cout << "Dump at gen= " << gen << " best= " << fbest << endl;
}

/* display syntax messages */
void help()
{
cout << "Syntax:" << endl;
cout << "  Firefly [-h|-?] [-l] [-p] [-c] [-k] [-s] [-t]" << endl;
cout << "    Parameters: -h|-? = command syntax" << endl;
cout << " -n = number of fireflies" << endl;
cout << " -d = problem dimension" << endl;
cout << " -g = number of generations" << endl;
cout << " -a = alpha parameter" << endl;
cout << " -b = beta0 parameter" << endl;
cout << " -c = gamma parameter" << endl;
}

int main(int argc, char* argv[])
{
        int i;
        int t = 1; // generation  counter

         // interactive parameters handling
         for(int i=1;i<argc;i++)
         {
            if((strncmp(argv[i], "-h", 2) == 0) || (strncmp(argv[i], "-?", 2) == 0))
            {
    help();
    return 0;
            }
            else if(strncmp(argv[i], "-n", 2) == 0)         // number of fireflies
            {
    n = atoi(&argv[i][2]);
            }
            else if(strncmp(argv[i], "-d", 2) == 0) // problem dimension
            {
    D = atoi(&argv[i][2]);
            }
            else if(strncmp(argv[i], "-g", 2) == 0) // number of generations
            {
    MaxGeneration = atoi(&argv[i][2]);
            }
            else if(strncmp(argv[i], "-a", 2) == 0) // alpha parameter
            {
    alpha = atof(&argv[i][2]);
            }
            else if(strncmp(argv[i], "-b", 2) == 0) // beta parameter
            {
    betamin = atof(&argv[i][2]);
            }
            else if(strncmp(argv[i], "-c", 2) == 0) // gamma parameter
            {
    gama = atof(&argv[i][2]);
            }
            else
            {
    cerr << "Fatal error: invalid parameter: " << argv[i] << endl;
    return -1;
            }
        }

        // firefly algorithm optimization loop
        // determine the starting point of random generator
srand(1);

// generating the initial locations of n fireflies
init_ffa();
#ifdef DUMP
dump_ffa(t);
#endif

while(t <= MaxGeneration)
{
// this line of reducing alpha is optional
alpha = alpha_new(alpha, MaxGeneration);

// evaluate new solutions
for(i=0;i<n;i++)
{
                        f[i] = function(ffa[i]);                        // obtain fitness of solution
I[i] = f[i]; // initialize attractiveness
}

// ranking fireflies by their light intensity
sort_ffa();
// replace old population
replace_ffa();

// find the current best
for(i=0;i<D;i++)
nbest[i] = ffa[0][i];
fbest = I[0];

// move all fireflies to the better locations
move_ffa();
#ifdef DUMP
dump_ffa(t);
#endif
t++;
}

cout << "End of optimization: fbest = " << fbest << endl;

return 0;
}

// FF test function
double cost(double* sol)
{
double sum = 0.0;

for(int i=0;i<D;i++)
sum += (sol[i]-1)*(sol[i]-1);

return sum;
}

double sphere(double* sol) {
int j;
double top = 0;
for (j = 0; j < D; j++) {
top = top + sol[j] * sol[j];
}
return top;
}

No comments:

Post a Comment

Have some problem with this code? or Request the code you want if you cant find it in Blog Archive.